μ-[1,9-Bis(diphenylphosphino)-3,7-dithianonane]-bis[dichloropalladium(II)]*

By Karin Aurivillius and Gert-Inge Bertinsson

Inorganic Chemistry 1, Chemical Center, University of Lund, PO Box 740, S-220 07 Lund 7, Sweden
(Received 9 February 1981; accepted 18 May 1981)

Abstract

C}_{31} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2} \mathrm{~S}_{2},\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{P}_{2} \mathrm{~S}_{2}\right) \mathrm{Cl}_{4}\right]\), $M_{r}=887 \cdot 29$, triclinic, $P \overline{1}, a=9.914$ (1), $b=12.713$ (2), $c=13.905$ (2) $\AA, \alpha^{\prime}=84.102$ (9), $\beta=81.041$ (9), $\gamma=79.675(9)^{\circ}, V=1698 \AA^{3}, Z=2, D_{m}=1.72$, $D_{x}=1.74 \mathrm{Mg} \mathrm{m}^{-3}$, final $R=0.036$ for 3045 observed reflexions. 1,9-Bis(diphenylphosphino)-3,7dithianonane, $\quad\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2}-$ $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$, (pssp), acts as a bis(bidentate) ligand through the two P and two S atoms. The complex between the ligand and PdCl_{2} is dinuclear. One P atom and the closest S atom are bonded to one Pd atom forming a five-membered ring ($\mathrm{PdPC}_{2} \mathrm{~S}$). The two remaining places in the square plane around the Pd atom are occupied by two Cl atoms in cis positions. The other S and P atoms of the same ligand molecule are bonded to another Pd atom in the same way as above. The compound is diamagnetic.

Introduction. A yellow crystal of $\mathrm{Pd}_{2}(\mathrm{pssp}) \mathrm{Cl}_{4}$ (cf. outline diagram A), of dimensions $0.06 \times 0.18 \times 0.20$ mm , prepared according to Degischer (1968) and provided by the late Professor G. Schwarzenbach, Zürich, was used for the intensity measurements.

(A)

All data were collected on an Enraf-Nonius CAD-4 four-circle diffractometer at room temperature. The background was measured for one quarter of the scan time at each end of the interval. A least-squares refinement of 48 accurately measured θ values gave the cell parameters. Possible space groups are $P 1$ and $P \overline{1}$. Details of the collection and reduction of the intensities are given in Table 1. The intensities and their standard deviations were corrected for Lorentz-polarization and absorption effects and for a decrease of about 4% in the three standard reflexions measured every second

[^0]0567-7408/81/112073-04\$01.00
hour. The positions of the two Pd atoms were determined from a Patterson synthesis and the other non- H atoms were found in successive electron-density maps, $P 1 \overline{1}$ being assumed. The least-squares refinement was performed with SHELX (Sheldrick, 1976), minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $w^{-1}=k \sigma^{2}(F)$. The phenyl rings were treated as rigid groups (C-C $1 \cdot 395 \AA$). The phenyl and methylene H atoms were geometrically generated at the end of each cycle of the refinement of the non- H atoms ($\mathrm{C}-\mathrm{H} 1.080 \AA$). The atoms $\mathrm{Pd}, \mathrm{Cl}, \mathrm{S}$ and P were refined with anisotropic and the other atoms with isotropic temperature factors. A correction for anomalous dispersion was made (Cromer \& Liberman, 1970). The intensities did not show any indication of extinction. The highest residual electron density was $0.7 \mathrm{e} \AA^{-3}$ and the deepest pit 0.5 e \AA^{-3}. Scattering factors for neutral non-H atoms were from Doyle \& Turner (1968) and for neutral H atoms from Stewart, Davidson \& Simpson (1965). Final positional parameters are given in Table $2 . \dagger$

An investigation of the structure in space group $P 1$ was not made because of the then low quotient between the number of reflexions and parameters and as the

[^1]Table 1. Details of the collection and reduction of the intensities and the least-squares refinement

Radiation	Mo Ka (Zr filtered)
θ internal (${ }^{\circ}$)	3-25
Scan type/width $\Delta \omega\left(^{\circ}\right.$)	$\omega-2 \theta / 0.85+0.40 \tan \theta$
Maximum recording time (min)	3
Control reflexions	334; 211 ; 541
$\mu\left(\mathrm{mm}^{-1}\right)$	1.58
Range of transmission factors	0.77-0.91
Number of reflexions measured	6215
Number of reflexions used in the final refinement $[I>2 \sigma(I)$]	3045
Number of parameters	183
$R=\sum\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| / \sum\left\|F_{o}\right\|$	0.036
$R_{w}=\left[\sum w\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right)^{2} / \sum w\left\|F_{o}\right\|^{2}\right]^{1 / 2}$	0.041

[^2]Table 2. Fractional coordinates and isotropic temperature factors for the non- H atoms

The values for H are deposited. E.s.d.'s are in parentheses. For $\mathrm{Pd}, \mathrm{Cl}, \mathrm{P}$ and S the isotropic mean values of $U_{i j}$ are given, calculated according to Willis \& Pryor (1975).

	x	y	z	$U\left(\AA^{2}\right)$
Pd(1)	$0 \cdot 10868$ (7)	$-0 \cdot 17344$ (5)	$0 \cdot 17565$ (4)	0.0382 (3)
Pd(2)	-0.37793 (8)	0.25996 (6)	0.32346 (5)	0.0488 (3)
$\mathrm{Cl}(1)$	0.0676 (3)	-0.3101 (2)	0.0922 (2)	0.058 (1)
$\mathrm{Cl}(2)$	0.2630 (3)	-0.1062 (2)	0.0460 (2)	0.066 (1)
$\mathrm{Cl}(3)$	-0.2753 (3)	$0 \cdot 1463$ (2)	0.4481 (2)	0.080 (1)
$\mathrm{Cl}(4)$	-0.6037 (3)	0.2497 (2)	0.3906 (2)	0.073 (1)
S(1)	$0 \cdot 1569$ (2)	-0.0513 (2)	0.2681 (2)	0.044 (1)
S(2)	-0.1591 (3)	0.2707 (3)	0.2489 (2)	0.075 (1)
P(1)	-0.0455 (2)	-0.2158 (2)	$0 \cdot 3003$ (2)	0.037 (1)
$\mathrm{P}(2)$	-0.4567 (2)	0.3790 (2)	$0 \cdot 2090$ (2)	0.041 (1)
C(1)	0.0037 (9)	-0.1652 (7)	0.4064 (6)	0.043 (3)
C(2)	0.0354 (9)	-0.0536 (7)	0.3808 (6)	0.051 (3)
C(3)	$0 \cdot 1160$ (11)	0.0835 (8)	0.2124 (8)	0.071 (3)
C(4)	0.0011 (17)	$0 \cdot 1068$ (13)	0.1506 (12)	$0 \cdot 129$ (5)
C(5)	-0.1207 (15)	$0 \cdot 1424$ (11)	$0 \cdot 1843$ (11)	$0 \cdot 113$ (5)
C(6)	-0.1794 (11)	0.3832 (8)	$0 \cdot 1582$ (8)	0.076 (4)
C(7)	-0.3113 (10)	0.3896 (8)	$0 \cdot 1135$ (7)	0.060 (3)
C(8)	-0.0551 (5)	-0.3544 (4)	0.3347 (5)	0.039 (3)
C(9)	0.0692 (5)	-0.4255 (4)	0.3378 (5)	0.054 (3)
C(10)	0.0677 (5)	-0.5330 (4)	0.3698 (5)	0.063 (3)
C(11)	-0.0582 (5)	-0.5694 (4)	0.3986 (5)	0.057 (3)
C(12)	-0.1826 (5)	-0.4984 (4)	0.3955 (5)	0.068 (3)
C(13)	-0.1810 (5)	-0.3909 (4)	0.3636 (5)	0.054 (3)
C(14)	-0.2165 (6)	-0.1431 (4)	$0 \cdot 2855$ (3)	0.038 (3)
C(15)	-0.2469 (6)	-0.1102 (4)	$0 \cdot 1913$ (3)	0.047 (3)
C(16)	-0.3735 (6)	-0.0463 (4)	$0 \cdot 1778$ (3)	0.054 (3)
C(17)	-0.4697 (6)	-0.0153 (4)	0.2585 (3)	0.057 (3)
C(18)	-0.4392 (6)	-0.0482 (4)	0.3527 (3)	0.053 (3)
C(19)	-0.3127 (6)	-0.1122 (4)	$0 \cdot 3662$ (3)	0.049 (3)
$\mathrm{C}(20)$	-0.5122 (6)	0.5112 (4)	0.2533 (4)	0.042 (3)
C(21)	-0.5128 (6)	$0 \cdot 6029$ (4)	$0 \cdot 1888$ (4)	0.058 (3)
C(22)	-0.5476 (6)	0.7043 (4)	0.2245 (4)	0.065 (3)
C(23)	-0.5818 (6)	0.7140 (4)	0.3248 (4)	0.057 (3)
C(24)	-0.5812 (6)	$0 \cdot 6224$ (4)	0.3893 (4)	0.051 (3)
C (25)	-0.5464 (6)	$0 \cdot 5210$ (4)	0.3536 (4)	0.043 (3)
$\mathrm{C}(26)$	-0.5871 (6)	$0 \cdot 3503$ (4)	$0 \cdot 1438$ (4)	0.043 (3)
C(27)	-0.5565 (6)	$0 \cdot 2553$ (4)	0.0969 (4)	0.061 (3)
C(28)	-0.6458 (6)	0.2329 (4)	0.0364 (4)	0.072 (3)
C(29)	-0.7659 (6)	$0 \cdot 3056$ (4)	0.0228 (4)	0.066 (3)
C(30)	-0.7966 (6)	$0 \cdot 4006$ (4)	0.0696 (4)	0.062 (3)
C(31)	-0.7072 (6)	0.4230 (4)	$0 \cdot 1302$ (4)	0.052 (3)

refinement in $P \overline{1}$ was satisfactory. Magneticsusceptibility measurements in the temperature interval 80-290 K with a Faraday balance (Blom \& Hörlin, 1977) showed the compound to be diamagnetic. The computer work was performed on the Univac 1100 computer in Lund.

Discussion. Selected interatomic distances and angles are given in Fig. 1 and Table 3. A view of the atomic arrangement of $\mathrm{Pd}_{2}(\mathrm{pssp}) \mathrm{Cl}_{4}$ and a stereoview of the contents of the unit cell are given in Figs. 2 and 3. In the structures of $|\mathrm{NiI}(\mathrm{pssp})|\left|\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right|$ (Aurivillius \& Bertinsson, 1980) and $|\mathrm{Ni}(\mathrm{pssp})|\left|\mathrm{ClO}_{4}\right|_{2}$ (Aurivillius \& Bertinsson, 1981), fundamental building elements are

Fig. 1. A schematic drawing of the complex molecule Pd_{2} (pssp) Cl_{4} showing interatomic distances (\AA). The $\mathrm{C}-\mathrm{C}$ distances in the phenyl rings (omitted in the drawing) are assumed to be $1.395 \AA$. The bonds of the ligand chain are drawn with heavy lines, those in the coordination polyhedra of Pd with dashed lines.

Table 3. Angles $\left(^{\circ}\right)$ in the coordination polyhedra of $\mathrm{Pd}(1), \mathrm{Pd}(2), \mathrm{P}(1), \mathrm{P}(2), \mathrm{S}(1)$ and $\mathrm{S}(2)$
E.s.d.'s are given in parentheses. For labelling, see Fig. 1 and Table 2.

$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$95 \cdot 2(1)$	$\mathrm{Cl}(3)-\mathrm{Pd}(2)-\mathrm{Cl}(4)$	$95 \cdot 6(1)$
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$174 \cdot 6(1)$	$\mathrm{Cl}(3)-\mathrm{Pd}(2)-\mathrm{P}(2)$	$173 \cdot 2(1)$
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$90 \cdot 2(1)$	$\mathrm{Cl}(3)-\mathrm{Pd}(2)-\mathrm{S}(2)$	$87 \cdot 1(1)$
$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$87 \cdot 5(1)$	$\mathrm{Cl}(4)-\mathrm{Pd}(2)-\mathrm{P}(2)$	$89.1(1)$
$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$173 \cdot 1(1)$	$\mathrm{Cl}(4)-\mathrm{Pd}(2)-\mathrm{S}(2)$	$176 \cdot 8(\mathrm{i}$,
$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$87 \cdot 5(1)$	$\mathrm{S}(2)-\mathrm{Pd}(2)-\mathrm{P}(2)$	$88.4(1)$
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	$105 \cdot 1(3)$	$\mathrm{Pd}(2)-\mathrm{P}(2)-\mathrm{C}(7)$	$106 \cdot 5(3)$
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$119 \cdot 1(2)$	$\mathrm{Pd}(2)-\mathrm{P}(2)-\mathrm{C}(20)$	$111 \cdot 8(2)$
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(14)$	$110 \cdot 6(2)$	$\mathrm{Pd}(2)-\mathrm{P}(2)-\mathrm{C}(26)$	$119.4(2)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$105 \cdot 2(3)$	$\mathrm{C}(7)-\mathrm{P}(2)-\mathrm{C}(20)$	$106 \cdot 5(4)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(14)$	$106 \cdot 3(3)$	$\mathrm{C}(7)-\mathrm{P}(2)-\mathrm{C}(26)$	$103 \cdot 0(4)$
$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(14)$	$109 \cdot 5(3)$	$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(26)$	$108 \cdot 6(3)$
$\mathrm{Pd}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	$106 \cdot 5(3)$	$\mathrm{Pd}(2)-\mathrm{S}(2)-\mathrm{C}(5)$	$99.4(5)$
$\mathrm{Pd}(1)-\mathrm{S}(1)-\mathrm{C}(3)$	$110 \cdot 9(4)$	$\mathrm{Pd}(2)-\mathrm{S}(2)-\mathrm{C}(6)$	$104 \cdot 8(4)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(3)$	$104 \cdot 4(5)$	$\mathrm{C}(5)-\mathrm{S}(2)-\mathrm{C}(6)$	$108 \cdot 5(6)$

the ions $[\mathrm{Nil}(\mathrm{pssp})]^{+}$and $\left[\left.\mathrm{Ni}(\mathrm{pssp})\right|^{2+}\right.$ respectively. The complexes are thus mononuclear consisting of one ligand molecule, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2^{-}}$ $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ (pssp), coordinating one Ni atom by the two P and the two S atoms. The P and S atoms form the basal plane in a square pyramid with an I atom in the apical position in $\left[\left.\mathrm{Nil}(\mathrm{pssp})\right|^{+}\right.$and the corners in a square plane in $\left[\left.\mathrm{Ni}(\mathrm{pssp})\right|^{2+}\right.$ respectively. In the complex between pssp and palladium(II) chloride the coordination figure around Pd is also a square plane. The complex is, however, not mononuclear, as in the case of the Ni compounds, but dinuclear (Figs. 1 and 2) and also uncharged. $\mathrm{P}(1)$ and $\mathrm{S}(1)$ are bonded to $\operatorname{Pd}(1)$ forming a five-membered ring ($\mathrm{PdPC}_{2} \mathrm{~S}$). $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ are trans to $\mathrm{S}(1)$ and $\mathrm{P}(1)$. The coordination of $\mathrm{Pd}(2)$ is similar to that of $\mathrm{Pd}(1)$ with $\mathrm{Cl}(3)$ and $\mathrm{Cl}(4)$ trans to $\mathrm{P}(2)$ and $\mathrm{S}(2) . \mathrm{C}(3), \mathrm{C}(4)$ and $\mathrm{C}(5)$ (Fig. 1) act as a connecting bridge between the two square planes of

Fig. 2. A drawing of the complex $\mathrm{Pd}_{2}(\mathrm{pssp}) \mathrm{Cl}_{4}$. The bonds in the ligand molecule, pssp, are drawn with heavy lines, those in the coordination polyhedra of Pd with double lines. The H atoms are omitted. The ellipsoids of $\mathrm{Pd}, \mathrm{Cl}, \mathrm{P}$ and S are drawn to enclose 50% probability. The C atoms are drawn with a fixed radius of the spheres.

Fig. 3. A stereoview of the contents of one unit cell of $\mathrm{Pd}_{2}\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{P}_{2} \mathrm{~S}_{2}\right) \mathrm{Cl}_{4}$. The H atoms are omitted.

Table 4. The coordination of Pd : deviations (\AA) from the least-squares planes with e.s.d.'s in parentheses
P, S and Cl were used for the calculation of the planes.

$\mathrm{Pd}(1)$	$-0.005(1)$	$\mathrm{Pd}(2)$	$-0.040(1)$
$\mathrm{P}(1)$	$-0.074(2)$	$\mathrm{P}(2)$	$0.045(2)$
$\mathrm{S}(1)$	$0.099(2)$	$\mathrm{S}(2)$	$-0.096(3)$
$\mathrm{Cl}(1)$	$0.082(3)$	$\mathrm{Cl}(3)$	$0.074(3)$
$\mathrm{Cl}(2)$	$-0.121(3)$	$\mathrm{Cl}(4)$	$-0.058(3)$

$\mathrm{Pd}(1)$ and $\mathrm{Pd}(2)$. The two Pd atoms are situated 0.005 (1) and 0.040 (1) \AA outside the least-squares planes formed by the P, S and Cl atoms (Table 4). The distances Pd-P [2.215 (2) \AA, mean] are in good agreement with $\operatorname{Pd}-\mathrm{P}$ [2.22 (1) \AA, meanl (P trans to $\mathrm{Cl})$ in [bis(diphenylphosphino)ethylamineldichloropalladium(II) (Mokuolu, Payne \& Speakman, 1973) but somewhat shorter than 2-260 (2) \AA (P trans to Cl) found in cis-dichlorobis[dimethyl(phenyl)phosphine]palladium(II) (Martin \& Jacobson, 1971).

The $\mathrm{Pd}-\mathrm{S}$ distances [2.273 (2) \AA, mean] are in good agreement with $2.28 \AA$ (S trans to Cl) reported by Stephenson, McConnell \& Warren (1967) in (\pm)methioninepalladium(II) chloride.

The distances in a square-planar arrangement around a Pd^{2+} ion are dependent on the trans influence of the coordinating atoms.

In $\mathrm{Pd}_{2}(\mathrm{pssp}) \mathrm{Cl}_{4}$ the distances $\mathrm{Pd}-\mathrm{Cl}(\mathrm{Cl}$ trans to P$)$ [2.372 (3) \AA, mean] are significantly longer than
$\mathrm{Pd}-\mathrm{Cl}(\mathrm{Cl}$ trans to S$)[2 \cdot 310(3) \AA$, mean $]$ indicating, as expected, a stronger trans influence for P . The following values are reported for corresponding distances. $\mathrm{Pd}-\mathrm{Cl}(\mathrm{Cl}$ trans to P$) 2.37 \AA$ (Mokuolu et al., 1973) and 2.362 (2) \AA (Martin \& Jacobson, 1971) and for $\mathrm{Pd}-\mathrm{Cl}(\mathrm{Cl}$ trans to S$) 2.35 \AA$ (Stephenson et al., 1967).

The angles between neighbouring atoms in the square-planar arrangements vary for $\operatorname{Pd}(1)$ from 87.5 to 95.2° and for $\operatorname{Pd}(2)$ from 87.1 to 95.6° (Table 3). The $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ angles are the largest.
The P and the S atoms are, as expected, $s p^{3}$ hybridized although in a distorted way (Table 3). For the P atoms the angles vary from 103.0 to 119.4° and for the S atoms from 99.4 to 110.9°. These are in good agreement with the values found in $[\mathrm{Ni}(\mathrm{pssp})]\left[\mathrm{ClO}_{4}\right]_{2}$.

The mean values of the distances $\mathrm{P}-\mathrm{C}$ (phenyl) and $\mathrm{P}-\mathrm{C}$ (methylene) are 1.80 (1) and 1.83 (1) \AA respectively, compared to $1.80(1)$ and $1.83(1) \AA$ for $[\mathrm{Ni}(\mathrm{pssp})]\left[\mathrm{ClO}_{4}\right]_{2}$. The mean $\mathrm{S}-\mathrm{C}$ distances are 1.81 (1) $\AA[C(5)-S(2) 1.89$ (2) \AA excluded] in agreement with 1.84 (1) \AA for $[\mathrm{Ni}($ pssp $)]\left[\mathrm{ClO}_{4}\right]_{2}$.

The $\mathrm{C}-\mathrm{C}$ distances and angles are all normal except the $C(4)-C(5)$ distance $[1.25(2) \AA\rfloor$ in the connecting bridge. An IR investigation shows no significant indication of a double bond in the structure. The anisotropic thermal ellipsoids of $C(4)$ and $C(5)$ indicate as expected a large motion in the chain $\mathrm{C}(3), \mathrm{C}(4)$ and $\mathrm{C}(5)$. The highest residual electron density in the region is $0.7 \mathrm{e} \AA^{-3}$. No alternatives for the positions of $\mathrm{C}(4)$ and $\mathrm{C}(5)$ could be detected in the difference map. Possibly disorder occurs but alternative positions of these atoms could not be found because of the low resolution of data, about $0.8 \AA$ (cf. Albertsson, Oskarsson, Ståhl, Svensson \& Ymén, 1980). Thus our opinion is that the structural formula A is the correct one.

The packing of the molecules is shown in Fig. 3. The shortest intermolecular distance is $\mathrm{Cl}(1)-\mathrm{H}(29)$ (2.58 \AA).

This investigation is part of a research programme financially supported by the Swedish Natural Science Research Council.

References

Albertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. \& Ymén, I. (1980). Acta Cryst. B36, 3072-3078.
Aurivillius, K. \& Bertinsson, G.-I. (1980). Acla Cryst. B36, 790-794.
Aurivillius, K. \& Bertinsson, G.-I. (1981). Acta Cryst. B37, 72-75.
Blom, B. \& Hörlin, T. (1977). Chem. Commun. Univ. Stockholm, No. 5.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Degischer, G. (1968). Dissertation No. 4163, ETH, Zürich, Switzerland.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Martin, L. L. \& Jacobson, R. A. (1971). Inorg. Chem. 10, 1795-1798.
Mokuolu, J. A. A., Payne, D. S. \& Speakman, J. C. (1973). J. Chem. Soc. Dalton Trans. pp. 1443-1445.

Sheldrick, G. M. (1976). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.
Stephenson, N. C., McConnell, J. F. \& Warren, R. (1967). Inorg. Nucl. Chem. Lett. 3, 553-556.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phy's. 42, 3175-3187.

Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography. Cambridge Univ. Press.

Acta Cryst. (1981). B3̇7, 2076-2079

The Structure of N - $\left(\gamma\right.$-Hydroxypropyl)granatanine-3-spiro- 5^{\prime}-hydantoin Monohydrate ${ }^{*} \dagger$

By J. Vilches, F. Florencio, P. Smith-Verdier and S. García-Blanco
Departamento de Rayos X, Instituto de Química-Física 'Rocasolano', Serrano 119, Madrid-6, Spain

(Received 30 January 1981; accepted 27 April 1981)

Abstract

C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} . \mathrm{H}_{2} \mathrm{O}\), monoclinic, $P 2_{1} / n, a=$ $12 \cdot 389$ (1), $b=12 \cdot 108(1), c=9.213$ (1) $\AA, \beta=$ $93.80(3)^{\circ}, Z=4, V=1378.96$ (6) $\AA^{3}, D_{x}=1.374$, $D_{m}=1.38 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Cu} K a)=0.80625 \mathrm{~mm}^{-1}, \lambda=$ $1.5418 \AA$. The structure was solved by direct methods and refined to $R=0.052$ for 2195 reflections. The bicyclo|3.3.1]nonane system adopts a boat-chair conformation. The resolution of the structure confirms the interpretation of IR spectra which showed the quaternary character of the piperidine N atom.

Introduction. Crystals of the title compound were supplied by Drs C. Avendaño and P. Ballesteros of the Departamento de Quimica Orgánica y Farmacéutica de la Facultad de Farmacia de la Universidad Complutense de Madrid. A crystal of dimensions 0.25 $\times 0.30 \times 0.20 \mathrm{~mm}$ was used to measure the unit-cell parameters and the intensity data on a Philips PW 1100 automatic diffractometer fitted with a graphitecrystal monochromator. An $\omega-2 \theta$ scanning mode with $\mathrm{Cu} K a$ radiation was used to measure 2638 independent reflections with θ values below $65^{\circ} ; 2195$ of these were considered as observed $\mid I>2 \sigma(I)$ where $\sigma(I)$ was determined from counting statistics]. The intensity data were reduced to structure factors and no absorption correction was applied.
The structure was solved with MULTAN (Main, Woolfson, Lessinger, Germain \& Declercq, 1977). 18 out of 20 atoms appeared on the E map calculated with 150 reflections. The two remaining atoms were located in a difference Fourier map. The structure was refined

[^3]by full-matrix least squares with isotropic and anisotropic thermal factors. All the H atoms, with the exception of the two water H atoms, were located in a difference map, and included only in one cycle of refinement with isotropic temperature factors. In successive cycles these temperature factors were kept fixed. The H atoms of the water were included at ideal positions in the first refinement and, in subsequent refinements, were kept fixed.

The refinement continued to a stage at which no parameter shift was significant. The final R value was 0.052 and $R_{w}=0.066$ where $R=\sum| | F_{o} \mid-$ $\left|F_{c}\right| / \sum\left|F_{o}\right|$ and $\left.R_{w}=\left.\left|\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum\right| F_{o}\right|^{2}\right]^{1 / 2}$. A weighting scheme was applied so as to give no trends in $\left\langle w \Delta^{2}\right\rangle v s\left|F_{o}\right|$ and $\sin \theta / \lambda$. The expression for the function of the weighting scheme is given in Table 1 (Martinez-Ripoll \& Cano, 1975). No trend in $\sin \theta / \lambda$ was observed.
The atomic scattering factors used were taken from International Tables for X-ray Crystallography (1974).

Computations were carried out with programs of the XRAY 70 system (Stewart, Kundell \& Baldwin, 1970).

Table 1. Function and coefficients for the weighting scheme
$w_{T}=K /\left|f\left(\left|F_{0}\right|\right)\right|^{2}, \quad 1 / f(\sin \theta / \lambda): K=0.673 ; f\left(\left|F_{0}\right|\right)=$ $a+b\left|F_{o}\right|$.

	a	b
$\left\|F_{o}\right\|<0.12$	-	-
$0.12<\left\|F_{o}\right\|<9.53$	0.506	0.006
$9.53<\left\|F_{o}\right\|<24.38$	0.268	0.036
$24.38<\left\|F_{o}\right\|$	-0.647	0.065

[^0]: *Structures of Complexes between Metal Halides and Phosphinothioethers or Related Ligands. XII.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, fractional coordinates and isotropic temperature factors for the H atoms have been deposited with the British Library Lending Division as Supplementay Publication No. SUP 36155 (20 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: (C) 1981 International Union of Crystallography

[^3]: * The Conformation of Heterocyclic Spiro Compounds. X.
 \dagger Granatanine is 9 -azabicyclol3.3.1|nonane and hydantoin is 2,4-imidazolidinedione.

